	Higher Prelim Revision 3 – Paper 1 Non-Calculator	30
1.	Line AC makes an angle of 120° with the positive direction of the x-axis. Calculate the gradient of the line AC	3
2.	Vector $a\mathbf{i} + b\mathbf{j} + \mathbf{k}$ is perpendicular to both the vectors $2\mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\mathbf{i} + \mathbf{j}$ Find the values of a and b	3
3.	Two functions, defined on suitable domains, are given as $f(x) = \frac{1}{x} - 4$ and $g(x) = -8x$. Find the value of $g(f(0.5))$	
4.	The diagram below shows part of a graph of a cubic function. y = 1 $y = 1$	
	This curve passes through the points (-1,0), (0,0), (1,2) and (2,0). Find the equation of this function	3
5.	Prove that vectors A(-1, -8, -2), B(2, -5, 4) and D(3, -4, 6) are collinear and state the ratio in which B divides AD	3
6.	Express $\cos x + \sin x$ in the form $k\cos(x - a)$, where $k > 0$ and $0 \le x \le 360^{\circ}$	4
	Hence or otherwise state the range of the function $y = \cos x + \sin x$	2
7.	Given that $f(x) = \sin^2 x$, find the exact value of $f'(\frac{\pi}{3})$	3
8.	The diagram shows two vectors a and b , where $ \mathbf{a} = 3$ and $ \mathbf{b} = 2\sqrt{2}$ The vectors are inclined at an angle of 45° (a) Evaluate (i) $\mathbf{a} \cdot \mathbf{a}$ (ii) $\mathbf{b} \cdot \mathbf{b}$ (iii) $\mathbf{a} \cdot \mathbf{b}$ b	3

9.	Prove that the function $f(x) = \frac{1}{x+1}$ is decreasing for all values of x	
	except $x = -1$	4
	A newore	
1		
1.	$M = \tan \theta, \rightarrow m = \tan 120^\circ \rightarrow m = -\tan 60^\circ \qquad m = -\sqrt{3}$	
2.	$ \begin{pmatrix} a \\ b \\ 1 \end{pmatrix}, \bullet \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = 0 \text{ and } \begin{pmatrix} a \\ b \\ 1 \end{pmatrix}, \bullet \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = 0 \rightarrow 2a + b + 1 = 0, a + b = 0 \rightarrow a = -1, b = 1 $	
3.	$f(0.5) = \frac{1}{0.5} - 4 = -2, \ g(-2) = -8(-2) = 16$ Or	
	$g(\frac{1}{x} - 4) = -8\left(\frac{1}{x} - 4\right) \longrightarrow -8\left(\frac{1}{0.5} - 4\right) = 16$	
4.	$y = kx(x+1)(x-2) \rightarrow 2 = k(1)(1+1)(1-2), 2 = k(1)(2)(-1), 2 = -2k, k = -1$	
	the equation of the function is $y = -x(x + 1)(x - 2)$ or $y = -x^3 + x^2 + 2x$	
5.	$\vec{AB} = \begin{pmatrix} 3 \\ 3 \\ 6 \end{pmatrix}, \vec{BD} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \vec{AB} = 3\vec{BD} \text{ so vectors are parallel. B is a common point so A, B}$ and D are collinear. B divides AD in the ratio 3:1	5
6.	$k\cos(x-a) = k\cos x \cos a - k\sin x \sin a$, $k\cos a = 1$, $k\sin a = 1$, $k = \sqrt{2}$, $a = 45^{\circ}$	
	$\sqrt{2}\cos(x-45) \rightarrow$ the range of this function is $-\sqrt{2} \le y \le \sqrt{2}$	
7.	$f'(x) = 2\sin x \cos x, f'(\frac{\pi}{3}) = 2\sin \frac{\pi}{3} \cos x \frac{\pi}{3} = \frac{\sqrt{3}}{2}$	
8.	a • a = $3^2 = 9$, b • b = $(2\sqrt{2})^2 = 8$, a • b = $3x \ 2\sqrt{2}x \ \cos 45^\circ = 6$	
9.	$f(x) = (x+1)^{-1},$ the restriction on the domain of $f'(x)$ is $x + 1 \neq 0, x \neq -1$ $f'(x) = -1(x+1)^{-2}$ $= -\frac{2}{(x+1)^2}$ for all other values of x , $f'(x) < 0$, so $f(x)$ is always decreasing	5
	$(\lambda \pm 1)$	

	Higher Prelim Revision 3 – Paper 2 Calculator	45
1.	A triangle has vertices A (-4, 1), B (12, 3) and C (7, -7)	
	(a) Find the equation of the median CM	3
	(b) Find the equation of the altitude AD	3
	(c) Find the coordinates of the point of intersection of the lines CM and AD	3
2.	(a) Show that $(x - 2)$ is a factor of $x^3 + 2x^2 - 4x - 8$ and hence fully factorise this polynomial	4
	(b) Hence solve $x^3 + 2x^2 - 4x - 8 = 0$	1
	(a) Find the coordinates of the stationary points of the curve with equation $y = x^3 + 2x^2 - 4x - 8$ and hence state their nature	7
	(b) Sketch the curve of $y = x^3 + 2x^2 - 4x - 8$, clearly marking the x and y-intercepts and the stationary points	2
3.	(a) Express $f(x) = 3x^2 - 12x - 15$ in the form $a(x-p)^2 + q$	3
	(b) Sketch the graph of (i) $y = f(x)$ (ii) $y = 10 - f(x)$	1 3

